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Abstraci. We compare the capabilities of different nonlinear algorithms for forecasting chaotic 
time series when a limited number of past values of the series is available, a sihlation most often 
found in real-world problems. In particular, we cunsider instance-based methods and neural 
network techniques, which are Frequently advocated in the lite"?. as universal. simple. and 
fairly reliable algorithms for time-series analysis. Furthermore. we propose a linear correction 
to the instance-based Wimplex method that produces remarkably good results on clean data. 
Finally, we present a preliminaq application of the ideas discussed here to the real-world series 
of solar activity, which is often taken as a benchmark for these kinds of studies. 

Real-world phenomena generally have cdmplex dynamics, very often masked by noise 
coming from measurement errors andor unexpected perturbations which couple temporarily 
with the system. Moreover, in many cases intrinsic nonlinearities lead to chaotic behaviour, 
which makes long-term predictions impossible [I]. Under these conditions, developing 
first-principle models can be very difficult or even infeasible. In such cases, one alternative 
approach for short-term forecasting is to build models directly from the available data. The 
observed past values of the dynamical variables are thus organized as a time series, and the 
intrinsic dynamics reconslncted from this historical data set. Several nonlinear methods 
have been developed for this purpose in recent years, some of them with high levels of 
sophistication and effectiveness (for short reviews see [2,3]). However, most methods are 
successful only when a large record of observations is available. 

In this paper we will compare the performances of different nonlinear algorithm for 
chaotic time-series forecasting when the available data are relatively scarce. In particular, 
we will consider two methods which have been advocated as universal, simple, and fairly 
reliable. The first one is a global attempt to fit the underlying attractor by means of the 
computational paradigm known as artificial neural networks [2,4]. The second one-known 
as Wimplex [5]-is local in character and belongs to the so-called instance-based methods, 
which make use of similar situations to the current state in the history of the system to 
predict its future behaviour. These two methods have been selected because, as mentioned 
above, (i) they can be applied to almost any problem at hand, (ii) they are simple to 
program and make no extensive use of computational resources (this is not true for large 
neural networks), and (iii) they have been proved to be reliable and even superior to other 
techniques [6,7]. Moreover, in general they do not require a large record of series iterates, 
since the number of internal parameters can be kept to a minimum (this is not the case, 
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for instance, with methods based on polynomial representations of the unknown dynamical 
laws). A preliminary comparison of these methods have been presented elsewhere [8] .  
We will also consider the introduction of linear corrections to the Wimplex algorithm. 
in a scheme that we will term local hyperplane approximation (LHA). According to this 
scheme, the Wimplex predictions are corrected by fitting an optimal hyperplane in the 
neighbourhood of the current state. Similar ideas concerning local fittings of the attractor 
have been discussed a number of times in the literature [9-111, but, to our knowledge, this 
particular implementation in connection with the Wimplex algorithm is new and will be 
shown to lead to a large improvement,in forecast performance. 

The examples on which we will discuss these ideas are the chaotic time series 
corresponding to the logistic map 

xrtl = rxA1 - xr) 
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( 1 )  
with r = 3.8, and the Lorenz system 

(2) 
dx dx 

dr dr dt 
ax+ay -= -  dy x z + b x - y  - = x y - c z  _ = _  

with a = 16.0 b = 120.1 and c = 4.0. The choice of constants is the same as in [ Z ] .  These 
two examples have been chosen in order to compare the different methods’ performances 
on a series with negligible autocorrelation (logistic map), and others with significant 
autocorrelation (Lorenz equations)t. These series are thus clean, computer generated data, 
where the methods can be checked without the complications intrinsic to actual observations 
of a system. In the last part of this paper we will also present results for real-world data 
corresponding to the solar activity (Wolf number). 

The task we face is the reconstruction of the intrinsic dynamics of a time-series 

2, = F(XJ (3 )  
where X ,  = ( x + ~ ,  xt-zr .  . . . , xt-dr) is a vector in the d a g  space where the reconstruction 
takes place [12] (in the following we will take r = 1). A dimension d of this embedding 
space equal to 2 0  + 1 ,  where D is the fractal dimension of the underlying attractor, is in 
principle sufficient for proper reconstruction of the dynamics [13] .  Both D and the unknown 
function F must be obtained from the historical data set that contains the past values of the 
observable x .  The simplest method to tackle this problem is to assume that x,  is a random 
variable of the previous d values, and use a linear autoregressive model. This corresponds 
to replacing the actual surface in lag space by a hyperplane. This linear method is in general 
not satisfactory for chaotic series 191, although it can have a limited use for time series with 
large autocorrelation. 

Other common approaches, nonlinear in character, are instance-based methods like 
Sugihara and May’s Simplex 1141. We will consider here a related, simpler version called 
Wimplex (w(d, n)) [5]. In this method one looks for the n vectors Xi (i = 1, n) in the 
record closest to the actual one, X , ,  and predicts 

wherexi = F(Xj).  The weight function is usually taken to be P(X,-Xi )  c( l /d (X, -Xi ) ,  
where d ( X ,  - Xi)  is the (Euclidean) distance between X ,  and Xi .  

t We have integrated the Lorenz system using a fourthader Runge-Kutta method with an arbitrary time step 
At = 0.03. This generates ilerales with an autocorrelation which decays to zero approximately after five time 
steps. 
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Yet another method of reconstructing chaotic time series makes use of artificial neural 
networks [2, 41. These parallel computational architectures are highly-interconnected simple 
processors (called neurons), which simulate to some extent the structure and functioning 
of the brain [15]. In particular, the so-called ‘feed-forward’ neural networks have a group 
of neurons (the input layer), which are fed by the external stimuli. These neurons pass 
the inputs they receive to intermediate units, which form the hidden layer. Neurons in the 
hidden layer process the information, and send their results to the units in the output layer, 
which finally produce the response to the external stimuli. The interconnection strength 
among neurons (weights) are chosen so that the network ‘learns’ to relate inputs to desired 
outputs. In this paper we will use feed-forward neural networks with d neurons in their 
input layer, n neurons in the hidden layer, and a single neuron in the output layer (“(d, n)). 
They will be trained to learn the unknown function F in (3) from the examples in the data 
set. Details of this method can be found in [2,4]. 

In what follows we will discuss a linear correction to the Wimplex algorithm which 
we call the local hyperplane approximation (LHA(d)). To implement the Wimplex, given 
the actual state X ,  one must find the closest X i  (i = 1, n)  vectors in the historical data 
set. If the points in this data set cover the whole attractor reasonably well, the distances 
d ( X ,  - X i )  will be small enough to approximate 

(4) 
where At = VF(X, ) .  We can now multiply these equations by some prescribed weight 
function P(Xt -Xi) .  and sum up all of them to obtain the prediction 

In order to find the d components of A, one eliminates the nth equation in (4) and chooses 
n - 1 = d ,  which reduces the problem to that of solving a squared linear system. Thus, the 
whole strategy leading to (5)  only amounts to predicting xt as the value corresponding to 
X ,  on the optimal local plane which contains the Wimplex point (x, a. 

In practice one usually faces the problem that the data are scarce and do not cover 
the whole attractor well, so that the approximation (4) is not always valid. In such cases 
the linear corrections are sometimes too large, and it is preferable to keep the Wimplex 
predictions. We have set an upper bound 

F(Xj)  E F(Xt)  +At.  (Xi  - X t )  

n t = F ( X , ) ~ ~ + A A , . ( X , - ~ ) .  (5) 

/At . ( X  - z)l < (6) 
to discriminate in which c.ases linear corrections are to be retained. This bound is expressed 
as a fraction OL of the largest iterate x,, in the series (the value of the parameter a! is chosen 
as explained below in the examples). 

In order to compare the performances of the above described methods in forecasting 
the chaotic time series (1) and (2) we have performed the following steps. For a given 
series, we have first generated 2N iterates. Then, we have split this record in a data set 
consisting of the first N iterates and a validation set containing the second half of points. 
Using the information in the data set, we have performed m-step forecasts of the iterates 
in the validation sett. Finally, we have appraised the forecasting abilities of the different 
methods by means of the average relative variance, 

t We call a m-step forecast the prediction of x, using as input the observed X,-,, which requires performing m 
succesive predictions. Notice, however, that the record used to make the forecasts is always restricted to the N 
first iterates; the values xi with i z N in X,-m are taken only to specify the initial state. 
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Figurr 1. Relative single-step prediction error ARV as 
a function of the lengih N of the historical data set for 
the Wmplex method w(d. n). (a) Logistic map with 
d = 1.n = 2: (b) Lorenz system with d = 4.n = 1. 
The open circles correspond to the values of N used in 
this paper. 
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Figure 2. Relative eight-step prediction ermr ARV for 
the logistic map. as a function of the maximum allowed 
size of linear corrections (see equation (6)). (a) N = 
125 iterates in the historical data set; (b) N = 250 
iterales in the historical data set. 

In this expression S can alternately be the data (i = 1, N) or validation (i = N + 1 , 2 N )  
set, f i ( m )  is the m-step forecast of xi ,  and F is the mean value of x on S. A perfect 
forecast corresponds to AEW = 0, while a constant prediction equal to the series average 
gives ARV = 1. Once, these results had been obtained, we repeated all the calculations 
starting with a larger initial record of 4N iterates. 

Since, as stated above, we are interested in comparing forecasting abilities when the 
available data are scarce, it is necessary to work out how to choose the length N of the 
historical record in such situation. In the case where one has a large number of iterates, 
local fittings of the attractor produce forecasting errors ARV with a nice scaling behaviour 
log ARV - log N [9]. In figure 1 we show this behaviour for both the logistic map and the 
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Figure 3. Relative multi-step prediction error ARV in the validation interval for the logistic map, 
as a function of ihe prediction stem. (a) N = 125 iterates in the historical data set: (b) N = 250 
iterates in the historical data set. 

Lorenz system, using the Wimplex algorithm as the prediction method. For the study below 
we have chosen values of N for which the error depaas from this scaling law and starts 
having a sample-dependent value, which indicates that the points do not cover the whole 
attractor uniformly. 

Let us discuss the results for the logistic map first. For this series we took N = 125, so 
we generated 500 iterates from (1) and considered alternately historical data sets consisting 
of the first 125 and 250 iterates, respectively. In order to choose the parameter a in (6) we 
proceeded as follows. Both the data and validation sets were forecast for different values 
of a, and the corresponding ARV plotted as in the typical curves shown in figure 2. As 
can be seen from this figure, the errors always decrease with a, so that, even for data sets 
as small as the ones being considered, for the logistic map it is safe to keep all the linear 
corrections (this is related to the low fractal dimension of its attractor). However, the same 
will no longer be true for the Lorenz system, as discussed below. Notice that the size of the 
linear corrections is smaller than 4% (2%) of xmax for the 125- (25O)-iterate record. Quite 
remarkably, their introduction reduces the error by approximately one order of magnitude 
with respect to the standard Wimplex algorithm (ARV value at a = 0). 

In figure 3 we present the best results obtained with the methods discussed above: 
w(d, n). " (d ,  n )  and LHA(d). To obtain these results we have performed an extensive 
search, playing with the available parameters d and n in every case. As can be seen from 
this figure, the LHA clearly outperforms the other two. 

Figures 4 and 5 show the results of a similar investigation for the Lorenz system (2). 
Here we generated 1000 iterates (N = 250) and took alternately data sets of 250 and 500 
points. Because of the Lorenz attractor stncture, the data are relatively scarcer in this case 
(figure 1). As a consequence, there is an optimal size of allowed linear corrections which 
depends on both the number of data points and forecast steps into the future (figure 4). 
A near optimal value of a can be chosen by finding the minimum error in the historical 
record. For this in-sample prediction, it is better to disregard points directly correlated to 
the one being predicted, which avoids taking unfair advantage of the series autocorrelation. 
Following this procedure, the LHA results again show this to be the best forecasting method. 

Up to this point we have considered only clean data. As a preliminary application of 
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Figure 4. Relative multi-step prediction error ARV 
for the Lorenz system, as a function of the maximum 
allowed size of linear corrections (see equation (6)). 
(0) Five-step predictions and N = 250 iterates in 
the historical data set; (b) Two-step predictions and 
N = 500 iterates in the historical data set. 
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Figure 5. Relative multi-step prediction error ARV in the 
validation interval for the Lorenz system, as a function 
of the prediction steps. (a) N = 250 iterates in the 
historical data set; (b) N = 5W iterates in the historical 
data set. 

these methods to real-world data, we studied the time series of solar activity as measured 
by the annual mean sunspot number (Wolf number). There is a fairly long record of this 
series, which starts in the year 1700. In order to compare with previous studies in the 
literature [4,6] we will split this record into two intervals, 1700-1920 and 1921-1955, 
which correspond to the data and validation sets respectively. Because of the important 
amount of noise in sunspot numbers, in this caSe~ the linear corrections produce only a 
slight improvement of -5-10% over the naked Wimplex. However, figure 6 shows that 
this method compares favourably against the usual benchmark 1161. and its predictions are 
close to the hest results in the literature 141. Moreover, for the interval 1956-1979 a single 
step prediction using the W(4,5) model gives ARV = 0.25, which should be compared with 
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Figure 6. Relative multi-step prediction error ARV for tAe solar-activity time series in the 
validation interval 1921-1955. The values ofa.zre chosen f" the in-sample prediction of the 
historical data set 1700-1920. The resulu for TAR and NN models were taken fmm [4]. 

ARVTAR = 0.28 [I61 and ARV" = 0.35 [4]. In passing we note that since the forecasting 
performance in figure 6 does not deteriorate appreciably over a long period of time, the 
solar-activity dynamics might be masked only by noise instead of chaotic behaviour [17]. 

In this paper we have proposed the LHA as a simple nonlinear algorithm for chaotic time- 
series forecasting. Moreover, we have shown that it is very efficient even for small data sets, 
outperforming more involved methods like neural networks. This conclusion is apparent 
from our results on clean data. However, in addition to being scarce, real data are most 
often plagued by noise. As expected, the forecasting capabilities of the LHA are affected 
by the presence of large amounts of noise in the data. We are currently investigating, in a 
controlled fashion, the effects of noise on this algorithm, which is crucial in determining its 
capabilities for real-world applications. 
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